56 research outputs found

    In silico analysis and verification of S100 gene expression in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The S100 protein family comprises 22 members whose protein sequences encompass at least one EF-hand Ca<sup>2+ </sup>binding motif. They were involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. However, the expression status of S100 family members in gastric cancer was not known yet.</p> <p>Methods</p> <p>Combined with analysis of series analysis of gene expression, virtual Northern blot and microarray data, the expression levels of S100 family members in normal and malignant stomach tissues were systematically investigated. The expression of S100A3 was further evaluated by quantitative RT-PCR.</p> <p>Results</p> <p>At least 5 S100 genes were found to be upregulated in gastric cance by in silico analysis. Among them, four genes, including S100A2, S100A4, S100A7 and S100A10, were reported to overexpressed in gastric cancer previously. The expression of S100A3 in eighty patients of gastric cancer was further examined. The results showed that the mean expression levels of S100A3 in gastric cancer tissues were 2.5 times as high as in adjacent non-tumorous tissues. S100A3 expression was correlated with tumor differentiation and TNM (Tumor-Node-Metastasis) stage of gastric cancer, which was relatively highly expressed in poorly differentiated and advanced gastric cancer tissues (<it>P </it>< 0.05).</p> <p>Conclusion</p> <p>To our knowledge this is the first report of systematic evaluation of S100 gene expressions in gastric cancers by multiple in silico analysis. The results indicated that overexpression of S100 gene family members were characteristics of gastric cancers and S100A3 might play important roles in differentiation and progression of gastric cancer.</p

    The early asthmatic response is associated with glycolysis, calcium binding and mitochondria activity as revealed by proteomic analysis in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The inhalation of allergens by allergic asthmatics results in the early asthmatic response (EAR), which is characterized by acute airway obstruction beginning within a few minutes. The EAR is the earliest indicator of the pathological progression of allergic asthma. Because the molecular mechanism underlying the EAR is not fully defined, this study will contribute to a better understanding of asthma.</p> <p>Methods</p> <p>In order to gain insight into the molecular basis of the EAR, we examined changes in protein expression patterns in the lung tissue of asthmatic rats during the EAR using 2-DE/MS-based proteomic techniques. Bioinformatic analysis of the proteomic data was then performed using PPI Spider and KEGG Spider to investigate the underlying molecular mechanism.</p> <p>Results</p> <p>In total, 44 differentially expressed protein spots were detected in the 2-DE gels. Of these 44 protein spots, 42 corresponded to 36 unique proteins successfully identified using mass spectrometry. During subsequent bioinformatic analysis, the gene ontology classification, the protein-protein interaction networking and the biological pathway exploration demonstrated that the identified proteins were mainly involved in glycolysis, calcium binding and mitochondrial activity. Using western blot and semi-quantitative RT-PCR, we confirmed the changes in expression of five selected proteins, which further supports our proteomic and bioinformatic analyses.</p> <p>Conclusions</p> <p>Our results reveal that the allergen-induced EAR in asthmatic rats is associated with glycolysis, calcium binding and mitochondrial activity, which could establish a functional network in which calcium binding may play a central role in promoting the progression of asthma.</p

    Design, Synthesis, and Structure−Activity Relationship Exploration of 1-Substituted 4-Aroyl-3-hydroxy-5-phenyl-1H-pyrrol-2(5H)-one Analogues as Inhibitors of the Annexin A2−S100A10 Protein Interaction

    Get PDF
    This research was supported by grants from Cancer Research UK. H.K.M. was funded by a Biotechnology and Biological Sciences Research Council studentship.S100 proteins are small adaptors that regulate the activity of partner proteins by virtue of direct protein interactions. Here, we describe the first small molecule blockers of the interaction between S100A10 and annexin A2. Molecular docking yielded candidate blockers that were screened for competition of the binding of an annexin A2 peptide to S100A10. Several inhibitory clusters were identified with some containing compounds with potency in the lower micromolar range. We chose 3-hydroxy-1-(2-hydroxypropyl)-5-(4-isopropylphenyl)-4-(4-methylbenzoyl)-1H-pyrrol-2(5H)-one (1a) as a starting point for structure-activity studies. These confirmed the hypothetical binding mode from the virtual screen for this series of molecules. Selected compounds disrupted the physiological complex of annexin A2 and S100A10, both in a broken cell preparation and inside MDA-MB-231 breast cancer cells. Thus, this class of compounds has promising properties as inhibitors of the interaction between annexin A2 and S100A10 and may help to elucidate the cellular function of this protein interaction.Peer reviewe

    Moderate performance of serum S100A12, in distinguishing inflammatory bowel disease from irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100A12, a calcium-binding proinflammatory protein secreted by granulocytes, has been associated with different diseases of inflammatory origin, including inflammatory bowel disease (IBD). In this study, the utility of serum S100A12, in discriminating IBD from irritable bowel syndrome (IBS), was tested.</p> <p>Methods</p> <p>S100A12 serum levels were determined in 64 patients with ulcerative colitis (UC), 64 with Crohn's disease (CD) and 73 with IBS, by means of an enzyme-linked immunosorbent assay. S100A12 serum levels were evaluated with respect to the levels of known inflammatory markers and patients' characteristics.</p> <p>Results</p> <p>The median values of serum S100A12 levels were 68.2 ng/mL (range: 43.4-147.4) in UC, 70 ng/mL (41.4-169.8) in CD and 43.4 ng/mL (34.4-74.4) in IBS patients. UC and CD patients had significantly higher serum S100A12 levels compared to IBS patients (<it>P </it>= 0.001 for both comparisons). Moreover, a cut-off for serum S100A12 levels of 54.4 ng/mL could predict both UC and CD with a 66.7% sensitivity and a 64.4% specificity. The area under curve was estimated at 0.67 with a 95% confidence interval of 0.60-0.75 (<it>P </it>< 0.001). Considering standard activity indices, higher serum S100A12 levels in active compared to inactive IBD were observed, although the recorded difference did not reach statistical significance. C-reactive protein (CRP) and serum amyloid A (SAA) levels, showed a statistically significant positive correlation with S100A12 (r = 0.39, <it>P </it>= 0.001 and r = 0.23, <it>P </it>= 0.02 respectively).</p> <p>Conclusions</p> <p>Increased levels of circulating S100A12 are found in IBD, compared to IBS. When used to distinguish IBD from IBS adult patients, serum S100A12 levels exhibit moderate performance. On the other hand, serum S100A12 may serve as an inflammatory marker in IBD, since it is well correlated with CRP and SAA.</p

    Large-scale proteomic identification of S100 proteins in breast cancer tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Attempts to reduce morbidity and mortality in breast cancer is based on efforts to identify novel biomarkers to support prognosis and therapeutic choices. The present study has focussed on S100 proteins as a potentially promising group of markers in cancer development and progression. One reason of interest in this family of proteins is because the majority of the S100 genes are clustered on a region of human chromosome 1q21 that is prone to genomic rearrangements. Moreover, there is increasing evidence that S100 proteins are often up-regulated in many cancers, including breast, and this is frequently associated with tumour progression.</p> <p>Methods</p> <p>Samples of breast cancer tissues were obtained during surgical intervention, according to the bioethical recommendations, and cryo-preserved until used. Tissue extracts were submitted to proteomic preparations for 2D-IPG. Protein identification was performed by N-terminal sequencing and/or peptide mass finger printing.</p> <p>Results</p> <p>The majority of the detected S100 proteins were absent, or present at very low levels, in the non-tumoral tissues adjacent to the primary tumor. This finding strengthens the role of S100 proteins as putative biomarkers. The proteomic screening of 100 cryo-preserved breast cancer tissues showed that some proteins were ubiquitously expressed in almost all patients while others appeared more sporadic. Most, if not all, of the detected S100 members appeared reciprocally correlated. Finally, from the perspective of biomarkers establishment, a promising finding was the observation that patients which developed distant metastases after a three year follow-up showed a general tendency of higher S100 protein expression, compared to the disease-free group.</p> <p>Conclusions</p> <p>This article reports for the first time the comparative proteomic screening of several S100 protein members among a large group of breast cancer patients. The results obtained strongly support the hypothesis that a significant deregulation of multiple S100 protein members is associated with breast cancer progression, and suggest that these proteins might act as potential prognostic factors for patient stratification. We propose that this may offer a significant contribution to the knowledge and clinical applications of the S100 protein family to breast cancer.</p

    Epigenetic regulation of S100 protein expression

    Get PDF
    S100 proteins are small, calcium-binding proteins whose genes are localized in a cluster on human chromosome 1. Through their ability to interact with various protein partners in a calcium-dependent manner, the S100 proteins exert their influence on many vital cellular processes such as cell cycle, cytoskeleton activity and cell motility, differentiation, etc. The characteristic feature of S100 proteins is their cell-specific expression, which is frequently up- or downregulated in various pathological states, including cancer. Changes in S100 protein expression are usually characteristic for a given type of cancer and are therefore often considered as markers of a malignant state. Recent results indicate that changes in S100 protein expression may depend on the extent of DNA methylation in the S100 gene regulatory regions. The range of epigenetic changes occurring within the S100 gene cluster has not been defined. This article reviews published data on the involvement of epigenetic factors in the control of S100 protein expression in development and cancer

    Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma

    Get PDF
    Deregulated expression of genes encoding members of the S100 family of calcium-binding proteins has been associated with the malignant progression of multiple tumour types. Using a pharmacological expression reactivation approach, we screened 16 S100 genes for evidence of epigenetic regulation in medulloblastoma, the most common malignant brain tumour of childhood. Four family members (S100A2, S100A4, S100A6 and S100A10) demonstrated evidence of upregulated expression in multiple medulloblastoma cell lines, following treatment with the DNA methyltransferase inhibitor, 5′-aza-2′-deoxycytidine. Subsequent analysis revealed methylation of critical CpG sites located within these four genes in an extended cell line panel. Assessment of these genes in the non-neoplastic cerebellum (from which medulloblastomas develop) revealed strong somatic methylation affecting S100A2 and S100A4, whereas S100A6 and S100A10 were unmethylated. Assessed against these normal tissue-specific methylation states, S100A6 and S100A10 demonstrated tumour-specific hypermethylation in medulloblastoma primary tumours (5 out of 40 and 4 out of 35, respectively, both 12%) and cell lines (both 7 out of 9, 78%), which was associated with their transcriptional silencing. Moreover, S100A6 hypermethylation was significantly associated with the aggressive large cell/anaplastic morphophenotype (P=0.026). In contrast, pro-metastatic S100A4 displayed evidence of hypomethylation relative to the normal cerebellum in a significant proportion primary tumours (7 out of 41, 17%) and cell lines (3 out of 9, 33%), which was associated with its elevated expression. In summary, these data characterise complex patterns of somatic methylation affecting S100 genes in the normal cerebellum and demonstrate their disruption causing epigenetic deregulation of multiple S100 family members in medulloblastoma development. Epigenetic events affecting S100 genes have potential clinical utility and merit further investigation as molecular biomarkers for this disease

    Nuclear S100A7 Is Associated with Poor Prognosis in Head and Neck Cancer

    Get PDF
    Tissue proteomic analysis of head and neck squamous cell carcinoma (HNSCC) and normal oral mucosa using iTRAQ (isobaric tag for relative and absolute quantitation) labeling and liquid chromatography-mass spectrometry, led to the identification of a panel of biomarkers including S100A7. In the multi-step process of head and neck tumorigenesis, the presence of dysplastic areas in the epithelium is proposed to be associated with a likely progression to cancer; however there are no established biomarkers to predict their potential of malignant transformation. This study aimed to determine the clinical significance of S100A7 overexpression in HNSCC.Immunohistochemical analysis of S100A7 expression in HNSCC (100 cases), oral lesions (166 cases) and 100 histologically normal tissues was carried out and correlated with clinicopathological parameters and disease prognosis over 7 years for HNSCC patients. Overexpression of S100A7 protein was significant in oral lesions (squamous cell hyperplasia/dysplasia) and sustained in HNSCC in comparison with oral normal mucosa (p(trend)<0.001). Significant increase in nuclear S100A7 was observed in HNSCC as compared to dysplastic lesions (p = 0.005) and associated with well differentiated squamous cell carcinoma (p = 0.031). Notably, nuclear accumulation of S100A7 also emerged as an independent predictor of reduced disease free survival (p = 0.006, Hazard ratio (HR = 7.6), 95% CI = 1.3-5.1) in multivariate analysis underscoring its relevance as a poor prognosticator of HNSCC patients.Our study demonstrated nuclear accumulation of S100A7 may serve as predictor of poor prognosis in HNSCC patients. Further, increased nuclear accumulation of S100A7 in HNSCC as compared to dysplastic lesions warrants a large-scale longitudinal study of patients with dysplasia to evaluate its potential as a determinant of increased risk of transformation of oral premalignant lesions

    S100A1: A Multifaceted Therapeutic Target in Cardiovascular Disease

    Get PDF
    Cardiovascular disease is the leading cause of death worldwide, showing a dramatically growing prevalence. It is still associated with a poor clinical prognosis, indicating insufficient long-term treatment success of currently available therapeutic strategies. Investigations of the pathomechanisms underlying cardiovascular disorders uncovered the Ca2+ binding protein S100A1 as a critical regulator of both cardiac performance and vascular biology. In cardiomyocytes, S100A1 was found to interact with both the sarcoplasmic reticulum ATPase (SERCA2a) and the ryanodine receptor 2 (RyR2), resulting in substantially improved Ca2+ handling and contractile performance. Additionally, S100A1 has been described to target the cardiac sarcomere and mitochondria, leading to reduced pre-contractile passive tension as well as enhanced oxidative energy generation. In endothelial cells, molecular analyses revealed a stimulatory effect of S100A1 on endothelial NO production by increasing endothelial nitric oxide synthase activity. Emphasizing the pathophysiological relevance of S100A1, myocardial infarction in S100A1 knockout mice resulted in accelerated transition towards heart failure and excessive mortality in comparison with wild-type controls. Mice lacking S100A1 furthermore displayed significantly elevated blood pressure values with abrogated responsiveness to bradykinin. On the other hand, numerous studies in small and large animal heart failure models showed that S100A1 overexpression results in reversed maladaptive myocardial remodeling, long-term rescue of contractile performance, and superior survival in response to myocardial infarction, indicating the potential of S100A1-based therapeutic interventions. In summary, elaborate basic and translational research established S100A1 as a multifaceted therapeutic target in cardiovascular disease, providing a promising novel therapeutic strategy to future cardiologists

    Joining S100 proteins and migration:for better or for worse, in sickness and in health

    Get PDF
    The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel
    corecore